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A B S T R A C T

Introduction: The U.S. swine industry is vulnerable to the rapid spread of disease due to systemic structural issues. 
While animal movement networks are used to identify disease spread risks and design response plans, human 
movement between farms were rarely accounted for. Human movements, when integrated with animal move
ment models, create a different, more inclusive, and accurate network structure when compared to animal 
movements alone.
Methods: One year of propriety farm visit data was analyzed and consisted of anonymized property IDs, location, 
and user/truck IDs, along with visit dates, property, vehicle, and entry types from three swine management 
companies. A static directed network was created using the igraph package in R for all movements, with separate 
sub-networks for each entry type (animal, human, and subsets of vehicle types). Network statistics for each sub- 
network were compared.
Results: The full network included 455 properties, 11 property types, 9 vehicle types, 12 entry types, and 320001 
edges (trips between properties). The longest path length was 10 in the animal movement network but decreased 
to 5 for the full and human movement network, while the average path length decreased from 3.2 to 2.2. Edge 
density increased from 0.03 to 0.09 for the human network and 0.1 for the full network. For all network 
properties examined, the full and human movement networks demonstrated higher connectivity than the animal 
network. A heavy right skew in the degree distributions indicates a ’hub’ structure (scale-free-like network) and 
the shorter path lengths indicates a small-world network topology.
Discussion: The full network is very well connected, more so than expected based on animal movement alone. 
Hubs may indicate points of disease susceptibility and ’super-spreader’ properties. The high connectivity shows 
that swine farm networks may be more susceptible to spread of an introduced disease than expected from 
previous analyses.
Conclusions: Monitoring human, as well as animal movement, provides for a more complete and accurate un
derstanding of swine farm biosecurity risks.

1. Introduction

The swine industry is a critical sector in agriculture, contributing 
significantly to the national and global economies and food supply. The 
United States is the 4th largest global swine producing nation (Statista, 
2022), producing 12 % of the world’s pork (Pork Checkoff, n.d) and 
contributing over $57 billion to the nation’s GDP (National Pork 

Producers Council, n.d). It is essential for this industry to maintain 
robust biosecurity and health management practices to maintain 
disease-free status related to global trade and to prevent outbreaks of 
foreign animal diseases (FADs). Biosecurity measures stand between an 
infected farm and a non-infected farm. It determines if the pathogens are 
containable on site or if they might spread within the system (Manuja 
et al., 2014). Strict implementation of biosecurity protocols can 
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determine whether a small outbreak evolves into a large epidemic.
Transportation plays an important role in the swine industry, serving 

various purposes such as moving animals between farms and processing 
facilities, feed transport, personnel, and services (Dutta et al., 2014; 
Konschake et al., 2013). While each of these elements contribute to the 
industry’s functionality, they also increase the risk of farm-to-farm dis
ease transmission. Human movements are shown to be an important 
transmission route in several important diseases, such as African Swine 
Fever virus (ASFv) and Porcine Endemic Diarrhea virus (PEDv). Risk 
assessments show that long range transmission of ASFv between coun
tries are likely associated with human movement and importation of 
products (Montenegro and Manabat, 2023). USDA’s risk assessment 
estimates that illegal entry of swine products and by-products via 
human-assisted movement pathways has a high likelihood of intro
ducing ASFv into the U.S. (USDA APHIS, 2019). Hsu et al. (2023) found 
that the primary risk factor for ASFv transmission between commercial 
farms within the Philippines is contaminated vehicles and people. The 
initial outbreak mechanisms and subsequent spread patterns of PEDv 
through the U.S. swine system are widely considered to be indicators of 
the risk of ASFv spread and establishment (Linhares et al., 2023). It was 
determined that between-farm PEDv outbreaks spread via truck move
ment and personal vehicles. Other infectious diseases such as avian 
influenza and porcine reproductive and respiratory syndrome (PRRSv) 
were found on vehicle surfaces possibly contributing to disease trans
mission between farms in the United States (Galvis and Machado, 2024). 
Current swine response plans are insufficient to prevent transmission 
(Linhares et al., 2023). Including personal vehicles as modes of trans
mission (in this study, called human movement) in any analysis is 
essential for accurate model assessments.

In the last decade or so, network models gained attention in the 
livestock industry in areas like the European Union and the United 
Kingdom where animal movement records are routinely collected. 
Multiple studies evaluating livestock infectious diseases, including cattle 
and swine, using network analysis were developed in Italy, the United 
Kingdom, and Slovenia. Researchers used animal movement networks to 
model infection spread and determine high-risk farm properties (Bajardi 
et al., 2012; Knific et al., 2020; Lee et al., 2017; Smith et al., 2013; 
Thakur et al., 2016). In veterinary epidemiology, sentinel surveillance, 
informed by network analysis, represents a novel approach to early 
warning systems and utilizes the analysis of animal transport data 
(Andraud et al., 2022; Schirdewahn et al., 2021), also known as social 
network analysis (SNA) (Bajardi et al., 2012). SNA is used to improve 
resource allocation for surveillance, management, and control strategies 
in production settings (Kinsley et al., 2020; Passafaro et al., 2020; Rorres 
et al., 2018; Sykes et al., 2023; Thakur et al., 2016). Network analysis is 
also used to estimate disease transmission dynamics (such as new in
cursions of African Swine Fever (ASF) (Main et al., 2022) in naïve 
countries, such as the U.S. (Cardenas et al., 2022; Galvis et al., 2022a, 
2022b; Sellman et al., 2022; Sykes et al., 2023).

Swine transport networks exhibit considerable heterogeneity 
(Nelson et al., 2020) between production sites. Various factors such as 
the different life stages of swine being transported, distances traveled, 
modes of transportation used, and the geographic layout of farms and 
processors all contribute to production differences (Knific et al., 2020; 
Nelson et al., 2020). Additionally, variations in regulations, infrastruc
ture, and economic factors can also shape the complexity and structure 
of these networks (Knific et al., 2020; Schirdewahn et al., 2021). SNA 
aids in characterizing transport data with the potential to discern the 
influence of human movements (Gates and Woolhouse, 2015). It facili
tates a systematic exploration of swine trade, enabling the assessment of 
the risk of disease transmission highlighting the role of human move
ment. In particular, local network measures or node centrality measures 
can effectively gauge the epidemiological significance of individual 
premises within the network (Andraud et al., 2022).

It was shown that optimal surveillance network models can signifi
cantly increase the accuracy of infectious disease transmission models 

(Convertino et al., 2014). Animal mobility data and transport networks 
are sufficient when transmission of disease depends generally on 
animal-to-animal contact (Rorres et al., 2018) but are insufficient when 
human mechanisms can transmit the disease, such as fomites on trucks, 
boots, or personal vehicles; other routes of infection should be consid
ered (Passafaro et al., 2020). Hence, incorporating human movements 
between farms should be included in the network model to ensure better 
accuracy guaranteeing the most efficacious models (Kiang et al., 2021). 
Models not including all possible transmission routes are ultimately 
insufficient (Galvis et al., 2022a). This is especially true for ASF; pro
fessional visits to farms are a significant risk factor for transmission 
(USDA APHIS, 2019; Boklund et al., 2020; Hsu et al., 2023; Montenegro 
and Manabat, 2023; Oļ̌sevskis et al., 2016).

However, most studies of disease spread in swine and other livestock 
systems focus either on animal or human movements and are rarely 
integrated within the same network system. Particularly in the U.S., only 
one study examined human movement between swine farms (Black 
et al., 2022) and one known study to date included only crew move
ments in the network when determining network structure (Galvis and 
Machado, 2024). This limitation hinders our ability to characterize the 
complex networks of movements—including animals, products, vehi
cles, and workers—that can potentially influence disease spread. 
Currently there is a gap in the understanding of the role humans play in 
the connectivity structure. Understanding and addressing these risks are 
essential for controlling disease transmission within the swine industry 
and other sectors. National-level surveillance and control programs are 
essential to promptly detect and manage outbreaks of infectious dis
eases, ensuring early intervention and containment measures (Ferdousi 
et al., 2019; Guinat et al., 2016; Passafaro et al., 2020).

The main objective of this study is to understand how network 
structure might be affected by integrating the human movements with 
those of animal and truck movements on swine farm networks. These 
human movements include crew, service vehicles (such as maintenance 
calls), personal employee vehicles, farm visitors, veterinarians, and 
other personnel that arrive on farm. We hypothesize that adding the 
human movements to an animal movement network will alter the 
network statistics and will change the outcomes in a disease trans
mission model. To increase the accuracy of network disease models, it is 
crucial to include both human and animal movement data into the 
network.

2. Materials and methods

2.1. Study design

2.1.1. Data collection
Data were provided by Farm Health Guardian, LLC (FHG). FHG 

creates a geofence on all properties associated with a commercial sys
tem, including contract systems. Any vehicle associated with that system 
carries a device (with a device ID #) that notes the time of entry on and 
exit off these properties. Individuals associated with the system will log 
visits through a user ID on a separate device tablet called a kiosk located 
at the entryway and exit of the barns. Any individual not registered with 
the system (i.e a visitor to the farm), would be signed in without either a 
user or device ID. Data provided included anonymized location of 
properties, date, time, anonymized identity of vehicle (device ID) and 
user ID, entry type, and metadata for the property and vehicle types. 
Properties include ones with and without animal holdings, such as 
farms, truck washes, processing plants, and offices. The data included 
three co-located commercial swine systems encompassing all properties, 
company owned and contract trucks, and associated personnel between 
April 1st, 2022, to April 26th, 2023.

Visits were defined as any vehicle entering a property. For the pur
pose of this study, trucks were considered any entry where the driver 
does not exit the vehicle. Human movements are personal vehicles. The 
drivers park the vehicle and enter buildings. Any visits that were missing 
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property identifications, a user ID or a device ID were removed. Any visit 
associated with a user or device ID that only appeared once was removed 
since it would not form a link between two properties. These links are 
necessary for network assembly and analysis. Missing values in the raw 
data for property type, vehicle type and property group ID were re-coded 
as “other” or “unknown”. Each property was assigned one or more 
property types, consisting of production type (Boar, Other/Boar, Farm, 
Farm/Sow/Nursery/Finisher, Sow/Finisher/Nursery, Boar/Finisher, 
Farrow to Finish, Nursery/Finisher, Nursery/Sow, Finisher Farm, 
Finisher, Finisher/Other, Office/Finisher, Nursery, Nursery/Office, Sow, 
Sow/Quarantine); management type (Farm/Livestock Broker, Other, 
Maintenance, Office); Dead Stock Storage; Distribution Center; Manure 
Storage; Transfer Dock; Feed Mill; Processing Plant/Processor; Quar
antine; and Truck wash. For better visualization purposes and graph 
development only, properties assigned multiple property types were re- 
coded into a multi-site type, the production type being assigned as pri
mary importance. Statistics were calculated on the originally named 
property type in FHG’s system.

2.2. Social network analysis

2.2.1. Network structure
The original data set had 503570 logged visits. Each visit had an ID, 

entry date and time, property ID, property group ID, user ID, device ID, 
entry type, property type, and vehicle type. All identifying data was 
anonymized. User IDs were individual users (named humans for the 
purpose of the study) and device IDs were individual vehicles. Nodes 
were defined as the individual geofenced properties, identified by 
property IDs. The variables “userID” and “deviceID” were combined into 
a single “edgeID” variable, representing individuals/trucks that moved 
between the nodes (properties). There were 1474 unique user IDs and 
404 unique device IDs combined to form a total of 1878 unique edge IDs. 
Each trip was sorted in chronological order. An edge was considered a 
trip from one property to the next property by the same edge ID. There 
was a total of 320001 edges in the full network. The number of each 
vehicle type included were 110 car movements, 5120 deadstock 
movements, 103527 feed truck movements, 65423 livestock move
ments, 9 manure movements, 3431 service movements, 2847 truck 
movements, 1133 worker movements, and 138401 human type move
ments (these were made up of the user IDs). The network was then 
divided into three other sub-networks based on the assigned vehicle type 
attribute of the edge IDs: 1) animal movement only (livestock and 
deadstock trucks); 2) human movement only (workers, humans, and 
cars); and 3) truck movement only (feed, manure, truck, and service 
vehicles). Human movement assumed that individuals would exit their 
vehicles on a property. Truck movements assumed that individuals did 
not exit the vehicle while visiting the property. Animal movements 
assumed that there was an animal (live or carcass) on the truck. Network 
statistics were calculated for all four networks.

The trips for the whole year were aggregated into a static network. 
The full static network was a non-weighted, non-reflexive directed 
aggregated network graph created in RStudio (Posit team, 2024) using 
the R language (R Core Team, 2022) and the igraph package (Csárdi, 
Nepusz, 2006; Csárdi et al., 2024).

2.2.2. Metrics calculated
Metrics explain the network structure and are important because 

structure affects function (Kraemer, 2005), which then affects flow of 
information across the network. Our flow of interest is the spread of 
disease. Node, edge, and network centrality metrics were determined for 
each network. Nodal metrics included degree centrality (in, out, total), 
betweenness, local transitivity, local triangle count, and eigenvector 
centrality. Network metrics included average path length, graph diam
eter, longest path length, degree assortativity, reciprocity, transitivity, 
global transitivity (also known as cluster coefficient), edge count and 
edge density. Cliques and the largest giant strongly connected 

component (GSCC) were also explored. Table 1
Testing the full network fit to a scale-free topology was accomplished 

using the powerLaw package in R (Gillespie, 2015). Bootstrapping 
methods estimated the Xmin (the lower bound threshold for the degree 
distribution or cut-off value) and gamma (the estimated exponent 
parameter in the power law function, sometimes known as alpha). The 
Kolmogorov-Smirnov (KS) goodness-of-fit test statistic tested a trun
cated power-law fit of our data. It estimated D (the estimated largest 
difference between an empirical cumulative distribution function (cdf) 
(observed cdf) and the proposed theoretical cdf (simulated one)) and 
k-min (the network degree at which D is the smallest distance) (Clauset 
et al., 2009). Additional methods for determining if the degree distri
bution of the full network fits a power law distribution are explained in 
detail in the supplemental material section. Vuong’s log-likelihood ratio 
test for non-nested models was used to test the power-law distribution 
against the log-normal distribution in the full network (Gillespie, 2015; 
Vuong, 1989). The estimated Xmin from bootstrapping was used as the 
threshold for the log-normal distribution making the distributions 
comparable.

2.2.3. Important high degree properties
Properties in the top quartile (25 %) of the total degree distributions 

are potential super-spreaders of disease (in, out and total; properties 
with greater than 661 degrees). These were identified and characterized 
by property type and vehicles involved (see Table 4). The probability 
that a type of property or type of vehicle would be in the top quartile of 
highest degree was calculated by taking the number of that property/ 
vehicle type in the top quartile and dividing it by the total number of 
that property/vehicle type present in the full network.

2.2.4. Shared edges
An edge is a vehicle trip connecting two properties together. Unique 

edges were identified by simplifying each network graph; in other 
words, all the multi-edges were removed so that there is only one trip 
present between two properties. These edges were then compared be
tween the four networks and the results are shown in the Venn diagram 
in Fig. 4.

3. Results

3.1. Data description

The final dataset had 320001 edges among four property groups (the 
original three plus an added unknown group), twelve different entry 
types, thirty-three different property types, and nine different vehicle 
types. For the graphs only, the 33 property types were condensed into 11 
by combining commonalities for better visualization. Table 2 describes 
the data underlying each of the different networks and Fig. 1 shows a 
graphical representation of each network with fixed property locations. 
The full and human networks included all 455 properties in the dataset. 
The animal and truck networks contained 416 and 414 properties 
respectively, indicating that not all the properties in the system had 
livestock present onsite. Both the full and human networks also had a 
large number of edge IDs (over 1500), corresponding to a higher number 
of users compared to the animal and truck networks, which only had 
approximately 100 different edge IDs.

3.2. Network metrics

The global and nodal network statistics for each of the four networks 
are presented in Table 3 and Figs. 2 and 3. We can directly compare each 
sub-network by its metrics since they have been normalized by the 
functions present in the R packages (Csárdi, Nepusz, 2006; Csárdi et al., 
2024). As expected, when the human movements are included in a full 
network with animals and trucks, connectivity and density of the 
network structure both increase. The full and human networks have 

T. Prezioso et al.                                                                                                                                                                                                                                Preventive Veterinary Medicine 234 (2025) 106370 

3 



more similarity as compared to the animal and truck networks. The 
diameter, edge density, edge count, average path length, transitivity, 
global transitivity, degree assortativity, reciprocity, betweenness, de
gree distribution, eigenvalue centrality, and local transitivity are more 
similar between the full and human networks compared to the full and 
animal/truck networks. These are highlighted in Table 3. This may 
indicate that the human movements, which are more numerous than the 
animal and truck movements (Table 2 number of edge IDs), dominate 
the structure of the full network. Property group assortativity was high 
for all 4 networks, indicating that most movements stayed within the 
same property group. Property type assortativity was positive and close 
to zero, indicating movement between similar property types is close to 
no association.

Fig. 3a is a log-log complementary cumulative distribution plot for 
all nodal network metrics that were calculated. All the metrics deviate 
between the full, human, animal, and truck networks. Fig. 3b focuses on 
the degree distribution plots to better visualize their differences and 
Table 3 shows the median (range) differences between the four 
networks.

In all four networks, there were only one or two giant strongly 
connected components (GSCC). The full network had one GSCC and 
included all 455 properties. The animal network had two strongly 
connected components (SCC). The GSCC was made up of 411 properties, 
the second SCC only 5. The human network consisted of one GSCC 
including all 455 properties. The truck network consisted of two SCC. 
The GSCC was made up of 412 properties, the second SCC only 2.

3.3. Power-law testing

The results for power-law testing are shown in the supplemental 
material. The KS test suggested that the full network did not fit a power- 
law. Graphically, the power-law and log-normal distributions came 
closest to fitting the degree distributions. Vuong’s test did not suggest a 
difference between the power-law and log-normal distributions. They 
both fit the observed cumulative distribution curve similarly.

3.4. Important high degree nodes

For both in- and out-degree distributions, any properties that had 
661 or more degrees (number of contacts), were considered in the top 
25 % and are identified in Table 4. The outcome was exactly the same in 
both, therefore the table is simplified to just showing in-degree results. 
Finisher, sow, and nursery barns comprised the most properties present 
in the upper quartile. Personnel, feed, and livestock vehicles comprised 
the most vehicle types present in the upper quartile.

3.5. Shared edges

The full network included a total of 22,531 unique trips between two 
properties. The human network had 18,958, the animal network had 
4900, and the truck network had 4837. A visual is shown in Fig. 4. There 
were 2804 shared edges between the human and animal networks, 2908 
shared edges between the human and truck networks, 1587 shared edges 
between the animal and truck networks, and 1135 shared edges between 
the human, animal, and truck networks.

4. Discussion

The main objective of this study was to analyze the structural effect 
of integrating human and animal movements together on swine farm 
networks. These human movements included crew, service vehicles 
(such as maintenance calls), personal employee vehicles, manure trucks, 
veterinarians, and other personnel that arrive on farm. We hypothesized 
that adding the movements of farm staff, service vehicles, management 
staff, and personal vehicles to an animal and truck movement network 
would alter the network statistics and change the parameters in a disease 

Table 1 
Description of Network Metric Terminology (based on the igraph package 
documentation (Csárdi, Nepusz, 2006).

Metric Description

Node Each property in the network
Edge Each trip between two properties

Global Measures Measures calculated at the level of the network.

Diameter The length of the longest path across the network. This 
is the largest number of trips of any two properties are 
from each other. The shorter the diameter, the more 
connected the network of properties.

Edge Density The ratio of actual number of edges (trips) to the 
largest possible number of edges (trips) in a network; 
assuming multiple edges are not present.

Edge Count The number of total trips in that network. The larger 
the count, the denser the network is.

Average Path Length The average path length calculates the shortest path 
between all possible pairs of properties and then takes 
the average. On average, you can get from any two 
properties in this number of trips. The shorter the 
average path length, the more connected the network 
of properties.

Transitivity The number of closed triangles in the network. The 
higher the number, the more connected the network is. 
A closed triangle is an edge connecting any three 
properties.

Global Transitivity The ratio of closed triangles to the number of triplets in 
the network. This is also sometimes called the cluster 
coefficient. The higher the number, the more 
connected the network is. The network was 
transformed into an undirected network to calculate 
this number. A triplet is a group of any three 
properties, whether they are connected or not.

Assortativity This is how well a property of a type is connected to 
another property of the same type. A positive number 
means (in general) that properties of one type 
associate with other properties of the same type. A 
negative number means that properties of one type 
associate with properties of another type, forming hub 
structures. The larger the number, the stronger the 
association. This is measured by a Pearson Correlation 
Coefficient. The measure is already compared against 
a configuration model, so we don’t need to run 
simulations and the values can be directly compared 
between the four networks.

Reciprocity The probability that a property connected to another 
property in one direction is also connected in the other 
direction on a directed network.

Cliques A clique is a sub-network within the network that is 
fully connected (every property within the clique is 
directly connected to each other).

Giant Strongly Connected 
Components

The largest subset of the directed network which any 
two nodes are connected and mutually reachable given 
the direction of the edges. In other words, the size is 
the number of farms within the network that can be 
directly linked to each other. A disease introduced to 
any property can potentially reach any other property 
in this component (Kiss et al., 2006).

Nodal Measures Measures calculated for each property and shown as a 
distribution curve.

Degree Centrality 
Measures

The degree distribution for each of our 4 networks. 
Total degree is the total number of trips in and out of 
each node. In-degree is the total number of directed 
trips arriving on a property. Out-degree is the total 
number of directed trips leaving a property.

Betweenness (vertex) The number of shortest paths going through a 
property. The higher the betweenness, the more these 
properties act as bridges during travel. Betweenness 
captures which properties are important in the flow of 
information, or in our case, the flow of disease spread. 
A connectivity measure.

Eigenvector Centrality In general, properties with high eigenvector 
centralities are connected to many other properties, 
which are also connected to many other properties 
(and so on). This considers how central the other 
properties in the network are. A connectivity measure.
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transmission model. Four networks were created; a full network that 
included all movements, an animal network that included all animal 
movements, a truck network that included service, feed, and manure 
trucks, and a human network that included all personnel vehicles, vet
erinarians, and other associated farm workers. Network metrics were 
calculated for all four networks. We acknowledge that not each type of 
contact has the same risk of disease transmission. The aggregation of the 
different types of movement explains the difference in network metrics 
only. To evaluate transmission risks, each type of movement can be 
assigned a different transmission parameter during risk assessments in 
modeling studies.

We found that including the human movements altered the network 
statistics, and that the full network more closely resembled the human 
network than it did the animal or truck networks. We concluded that to 
increase the accuracy of network disease models, it is crucial to include 
all elements of the full network, including human, animal, and truck 
movement data.

4.1. Network metrics

The diameter, edge density, edge count, average path length, tran
sitivity, global transitivity (clustering coefficient), degree assortativity, 
reciprocity, betweenness, degree distribution, eigenvalue centrality, and 
local transitivity are more similar between the full and human networks 
compared to the full and animal/truck networks. The addition of the 

human movements with the animal and truck movements changed the 
structure of the network, and therefore, will most likely change disease 
spread if the disease of interest can be transmitted indirectly. These 
metrics indicate an increase in connectivity and density, and potentially 
change the properties indicated for surveillance and control measures.

Strongly connected components play a crucial role in disease trans
mission. All four networks have a very large giant strongly connected 
component (GSCC) and many cliques. GSCC can be an indication of final 
epidemic size. The properties included in the GSCC are all connected in 
various ways and have a chance of being infected during an epidemic 
(Kiss et al., 2006; Marquetoux et al., 2016). The largest GSCC tends to 
increase in real-world social networks as the number of nodes and the 
average degree increases. Therefore, it is not surprising that we have 
very few numbers of strongly connected components in our networks 
(M, Jiaqi, personal communication, February 28th, 2024).

The high centrality measures (betweenness, eigenvector) and shorter 
average path lengths are more indicative of a small-world network to
pology (Marquetoux et al., 2016). Small-world networks are described 
as having shorter average path lengths and a 6x greater clustering co
efficient compared to a random graph (Lee et al., 2017; Relun et al., 
2016). Our full network had an average path length of 2.125 and a 
global transitivity of 0.4363, which is almost twice the average of a 
randomly generated graph with the same number of edges and vertices 
(1.895 and 0.2062, respectively, based on 1000 simulations; data shown 
in supplemental). Shorter average path lengths and diameter means that 

Table 2 
Description of data used to form each of the networks of three North American swine systems over one year.

Network 
Name

Number of Properties 
(n = 455)

Number of property 
groups (n = 4)

Number of Property 
types (n = 33)

Number of vehicle 
types (n = 9)

Number of vehicle entry 
types (n = 12)

Number of unique edge 
IDs (n = 1878)

Full 455 4 33 9 12 1771
Human 455 4 33 3 8 1555
Animal 416 3 31 2 4 114
Truck 414 3 29 4 5 102

Fig. 1. Comparable graphical representations of each movement network among three co-located North American swine systems: weighted, directed graphs showing 
the top 25 % of edges (trips), using identical layouts for comparability. The nodes (properties) are colored by property type, with simplified groupings for better 
visualization. The size of the node indicates the total degree for that node.
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infection is more likely to spread between properties (Kiss et al., 2006). 
Small-world networks can have faster disease spread reaching more 
distant properties from the central properties but tend to have a smaller 
epidemic size due to the increase in clustering (Newman, 2003; Thakur 
et al., 2016). However, the increase in clustering can decrease the 
epidemic threshold (Newman, 2003), making an outbreak more likely. If 
the network has a very high betweenness score, as we found here, this 
can actually increase the epidemic size (Marquetoux et al., 2016).

Reciprocity was high for the full, human, and truck networks, and 
half as much for the animal network. Reciprocity indicates bidirectional 
movements and a deeper look into which properties in the animal 
network have reciprocal movement is warranted. Reciprocal movement 
may indicate that although animals do not move up the hierarchical 

pyramid (which directs animal movement from source to production 
properties), people and trucks do. The reciprocity for the animal 
network was 0.35. We would expect a reciprocity of 0 if all the animals 
were moving in one direction. This movement may result in biosecurity 
breaks at source farms that can then be propagated through the system. 
Identifying reciprocal movements may help identify potential bio
security breaches.

4.2. Network structure

Network topology is not mutually exclusive. An empirical network 
might have structural aspects typical of multiple network models (i.e. 
scale-free, small word, etc) (Langendorf and Burgess, 2021). We see that 

Table 3 
Global and Median Nodal Centrality Measures for each sub-network of three co-located North American swine systems over one year.

Full Animal Human Truck
Global Statistics
Number of nodes 455 416 455 414
Longest path length
(Diameter)

5 10 5 15

Edge density 0.1091 0.02838 0.09178 0.02829
Edge count 92800 24740 52040 16030
Average path length 2.125 3.225 2.194 3.139
Transitivity 215800 16090 157500 10830
Global transitivity 0.4363 0.3189 0.4051 0.2541
Property type 
assortativity

0.07544 0.004057 0.04693 0.03692

Property System 
assortativity

0.9152 0.9757 0.8684 0.9434

Degree assortativity -0.1912 -0.269 -0.147 -0.3438
Reciprocity 0.6077 0.35 0.6442 0.7159
Largest Cliques: 
Number (size)

3 (24) 4 (15) 10 (21) 7 (11)

Giant Strongly 
Connected Component:
Number (size of GSCC)

1 (455) 2 (411) 1 (455) 2 (412)

Median (range) Nodal Statistics
Betweenness 88.79

(0, 35670)
26.35

(0, 85730)
108.8

(0, 41930)
37.87

(0, 52500)
Betweenness 
(normalized)

0.0004317
(0, 0.1735)

0.0001533
(0, 0.499)

0.0005289
(0, 0.2039)

0.0002226
(0, 0.3085)

Total degrees 295
(2, 6664)

68
(2, 3706)

162
(2, 6655)

46
(2, 2400)

Degree in 146
(1, 3341)

32
(1, 1948)

81
(1, 3337)

22
(1, 1279)

Degree out 149
(1, 3323)

35
(1, 1890)

83
(1, 3318)

24
(1, 1121)

Eigenvalue centrality 0.001575
(1.156e-07, 1)

0.00002768
(0, 1)

0.000476
(2.074e-07, 1)

0.0001931
(0, 1)

Local transitivity 0.5142
(0.2016, 1)

0.6056
(0, 1)

0.4649
(0.178, 1)

0.6
(0, 1)

Local triangle count 1051
(1, 9487)

37.5
(0, 1875)

619
(1, 8722)

46.5
(0, 1248)
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our full network has aspects of both small-world (shown by average path 
length and global transitivity) and scale-free topology (based on the 
power-law testing) present. The full network does not strongly resemble 
a scale-free network. This is not surprising as true strong scale-free 
networks are not as common as the scientific literature portends, and 
most social networks can exhibit scale-free like structures. Even though 
the network is not strongly scale-free, the power-law distribution can 
still be used to model epidemics (Relun et al., 2016). In our analysis, we 
found that the KS test failed to reject the null and showed that there was 
not enough evidence to say we had a true scale-free structure. Broido 
et al. showed that the log-normal distribution usually fits just as well as 
the power-law (Broido and Clauset, 2019). Vuong’s test on our full 
network did not indicate a difference between the power-law and 
log-normal distributions, agreeing with Brodio’s research. However, the 
best fit theoretical distribution should be used as the approximation of 
the underlying distribution in epidemic models (Marquetoux et al., 
2016). Topology can also differ within the same livestock production 
type. For example, Relun et al. (2016) found that the swine industry 
networks in Europe differed by production system in network structure 
and properties. Direct comparison with systems outside North America 
is ineffectual because of their difference in regulations, farm layouts, 
and practicing guidelines.

We found all of the subnetworks, as well as the full network, have 
scale-free-like attributes. Compared to random graphs, scale-free net
works usually have larger epidemic sizes due to the formation of central 
hubs in the structure. The larger the estimated exponent in the power- 
law (2.40 in our estimate), the larger the estimate of the epidemic 
size (Lee et al., 2017; Passafaro et al., 2020). A negative degree assor
tativity can also lead to a larger epidemic size (Lee et al., 2017) and is 
seen in all four of our networks. Disease spread is also faster on scale-free 
networks but can slow down once it reaches secondary and tertiary 
contacts (Thakur et al., 2016). Disease spread is highly likely on a 
scale-free network, regardless of the estimated disease transmissibility. 
However, it is not affected by clustering (Newman, 2003). Scale-free 
networks are resistant to random introduction of disease but highly 
susceptible to targeted disease introduction (such as in agro-terrorism) 
(Nair and Vidal, 2011; Thakur et al., 2016). The hubs in a scale free 

network are highly connected and can act as super-spreaders during a 
disease outbreak (Kraemer, 2005). These hubs, as identified in our 
network, would be important to include in surveillance programs.

One way we have identified potential hubs is through analysis of 
degree distributions. A high correlation between the in- and out-degree 
distributions in directed graphs indicates that properties are more likely 
to become infected and transmit disease. The covariance of these dis
tributions determines the epidemic outbreak threshold (Kiss et al., 
2006). Highly connected nodes (nodes with high degrees and high 
betweenness, as seen in our networks and listed in Table 4) are also more 
likely to increase disease spread (Marquetoux et al., 2016; Passafaro 
et al., 2020). Increased connections between high and low degree nodes, 
or increases in the clustering, may slow down spread, even with an R0 
>1 (Kiss et al., 2006; Marquetoux et al., 2016; Newman, 2003). How
ever, as connectivity increases, such as with the high betweenness and 
increasing density we found in our full network, disease may begin to 
spread faster (Newman, 2003). We found the full network to have a very 
high betweenness, especially compared to the animal sub-network, 
indicating that diseases that can be transmitted through fomites have 
the potential to spread faster through this system than those transmitted 
only directly. On a positive note, our full network has a heavy-tailed 
degree distribution and negative degree assortativity. According to 
Passafaro et al. (2020), networks that exhibit these structural properties 
are more responsive to targeted interventions due to the ability to cause 
network fragmentation.

The potential hubs in the network are those with the highest in- and 
out-degrees (Table 4). Finishing barns are expected to have high in- 
degrees, since they are at the bottom of the production pyramid. Sow 
and nursery barns, however, are expected to be at the top of the pro
duction pyramid, with low in-degree due to their need for high bio
security; they may have higher out-degree due to shipment of piglets to 
finishing sites, which is a risk for propagating infection after introduc
tion. When including human movements, our full network found that 
38 % of sow farms had both high in- and out-degree contacts. This in
dicates that the production pyramid biosecurity structure may be dis
rupted by human movement, which should be considered when facing 
an outbreak involving spread via fomites or human carriage.

Fig. 2. Global centrality measures for each sub-network of vehicle movement among three co-located North American swine systems. From left to right (top to 
bottom): average path length, degree assortativity, edge count, edge density, global transitivity, longest path length, number of properties, property group assor
tativity, property type assortativity, reciprocity, transitivity. The differences in diameter, edge density, edge count, average path length, transitivity, global tran
sitivity, degree assortativity, reciprocity, can be visualized in these bar charts.
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An edge represents a connection between two properties in the sys
tem that can transmit disease. The edges that are shared among our 
different sub-networks (Fig. 4) do not add any additional connections 
between properties, although they may increase the number of poten
tially infectious contacts between those properties. The edges unique to 
each subnetwork, however, are additional contacts added to the system 
because of incorporation of that transmission type. The human network 
has a total of 18,958 connections between properties. Only 5712 of them 
are shared with other subnetworks, leaving 13,246 connections added to 
the network by incorporating human movements. Thus, the number of 
potential transmission pathways via human movement is 2.3 times those 
possible through all other pathways.

The network presented here is a static network, aggregated over one 
year. Static networks approximate annual farm to farm transmission 
rates, although they may overestimate those rates given the shorter time 
frame of many outbreaks (Passafaro et al., 2020). Galvis et al. (2022a)
demonstrated that, in some cases, static networks can closely approxi
mate dynamic or temporal networks; their vehicle static network 
approximated their temporal network well, with causal fidelity values 
greater than 89 %. A static network model also provides cumulative 
statistics of the aggregated networks evaluated, although the compara
bility of static and dynamic networks in this regard has been inconsis
tent (Marquetoux et al., 2016; Passafaro et al., 2020).

The current study found that human movements dominated the 

Fig. 3. Complementary Cumulative Distribution Plots for: a) each sub-network nodal centrality measures (in log10-log2 scale for visualization) From left to right (top 
to bottom): betweenness, normalized betweenness, eigenvector centrality, local transitivity, local triangle count. b) degree distributions only (in log10-log2 scale for 
visualization). From left to right: Total degree, In-degree, Out-degree. The differences in betweenness, degree distributions, eigenvalue centrality, local transitivity, 
and local triangle count can be visualized.
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contact network of a group of commercial swine farms in North Amer
ica. Most of the previous livestock industry network modeling including 
human movement were performed outside North America, and previous 
U.S. studies generally include either only human movements (Black 
et al., 2022), or only animal movements (Lee et al., 2017; Passafaro 
et al., 2020; Thakur et al., 2016). The sole exception is one study 
describing network statistics of a single swine company in the United 
States (Galvis and Machado, 2024); this network differed from that 
described in this study in production system, region, number of nodes, 
different types of vehicles making up the sub-networks, visit definition, 
and different proportions of those vehicles within each sub-network. 
One main difference between these networks was the number of 
human vehicles included. About 88 % (1555/1771) of our total vehicles 
(edge IDs) were comprised of human movements, whereas only 32 out of 
a total of 398 (8 %) vehicles represented human movements in Galvis’ 
network. However, despite the differences, both models found a more 
highly connected network when trucks and human vehicles were 
included with animal movement, as shown by higher network densities, 
betweenness measurements, and lower path lengths.

Our animal sub-network is comparable to previously published 
movement networks based on animal movement only in North American 
swine systems. For instance, a static network of a multi-site swine pro
duction system in Iowa over 36 months found an average path length of 
6.56 and a diameter of 24 (Passafaro et al., 2020) after excluding animal 
shipments delivered to abattoirs, cull stations, boar studs, and any ani
mal movement that lacked certain information or were in directions 
opposite to the expected hierarchical structure. Our 12-month animal 
network included all animal movements, resulting in an average path 
length of 3.225 and a diameter of 10. However, a 12-month aggregated 
time network in the same study matched more closely with ours, with an 
average path length of 3.7 and a diameter of 12. Similarly, another study 
found an average path length of 3.20 and a diameter of 9 when aggre
gating monthly over a 12-month time frame (Lee et al., 2017). Both 
networks found a negative degree assortativity and heavy right tail de
gree distribution, suggesting a scale-free like structure (Lee et al., 2017; 
Passafaro et al., 2020), as did ours, although Lee et al. did find a positive 
degree assortativity, indicating possibly less hub structure. These data, 
and therefore the network structure appreciated, is specific for the swine 
systems used in this study. However, the structural outcomes were 
similar to other US studies and indicate that the overall findings may be 
applied generally within the country. Because of the varied structure of 
swine production networks in other geographical locations, such as 
Europe, means that these results may not be globally generalizable. This 
approach can be generalized to any swine system, given the data are 
prepared similarly.

4.3. Limitations

Our network analysis was constrained by the finite number of farms 
(nodes) included and limited (one year) time scale. This limited our 
ability to check assumptions, fully evaluate the scale-free nature, or 
evaluate seasonality in the network topology. However, the data is from 
a large multi-scale production system that is not expected to have sea
sonality in production (Relun et al., 2016). The small sample size may 
have limited our statistical power in fitting our network to the scale-free 
topology (Marquetoux et al., 2016); however, human systems frequently 
fail to fit exact topologies, so this lack of fit could represent the actual 
network structure. This study primarily focused on network structures 
and the effect of different movement types on those structures. We did 
not assess the effects of specific bio-security protocols and determined 
that it is not feasible at this time to develop specific recommendations. 
Ongoing research will include examining effects of specific interventions 
on disease spread within this network. Because we aggregated a years’ 
worth of data into a single network, we are not able to comment on the 
temporal variability of the network structure nor the impact on the 
analysis.

Table 4 
The number and type of properties and vehicles found in the top quartile of the 
in- and out-degree distributions. For both in- and out-degree, the top 25 % of 
properties were those with degrees higher than 661. Percent represents the 
percent of that property type in the top quartile. The vehicle types were those 
present in the edges associated with each high degree property.

Property 
Type

Number 
(%) of 

nodes of 
this type 

in top 
25 % by 
degree

Percent of 
type 

compared 
to total of 
that type 
% (total n 
in graph)

Vehicle 
Type

Number 
(%) of 

vehicles 
of this 
type in 

top 25 % 
by degree

Percent of 
type 

compared 
to total of 
that type 
% (total n 
in graph)

Finisher 34 
(29.82 %)

15 % 
(225)

Personnel 90957 
(41.82 %)

33 % 
(273274)

Sow 24 
(21.05 %)

38 % (63) Feed 72239 
(33.22 %)

57 % 
(125870)

Nursery 17 
(14.91 %)

27 % (63) Livestock 45298 
(20.83 %)

55 % 
(82756)

Feed Mill 9 
(7.89 %)

53 % (17) Deadstock 3713 
(1.71 %)

65 % 
(5656)

Truck Wash 8 
(7.02 %)

73 % (11) Service 2243 
(1.03 %)

28 % 
(7952)

Quarantine 3 
(2.63 %)

25 % (12) Truck 2202 
(1.01 %)

35 % 
(6132)

Distribution 
Center

2 
(1.75 %)

67 % (3) Workers 725 
(0.33 %)

44 % 
(1660)

Nursery, 
Finisher

2 
(1.75 %)

18 % (11) Car 106 
(0.05 %)

76 % 
(139)

Nursery, 
Sow

2 
(1.75 %)

67 % (3) Manure 5 (<
0.01 %)

19 % (26)

Office 2 
(1.75 %)

67 % (3) ​ ​ ​

Processing 
Plant

2 
(1.75 %)

40 % (5) ​ ​ ​

Dead Stock 
Storage

1 
(0.88 %)

50 % (2) ​ ​ ​

Farm, Other 1 
(0.88 %)

50 % (2) ​ ​ ​

Finisher, 
Other

1 
(0.88 %)

100 % (1) ​ ​ ​

Maintenance 1 
(0.88 %)

100 % (1) ​ ​ ​

Manure 
Storage

1 
(0.88 %)

100 % (1) ​ ​ ​

Other 1 
(0.88 %)

12.5 % (8) ​ ​ ​

Other, Dead 
Stock 
Storage

1 
(0.88 %)

100 % (1) ​ ​ ​

Other, 
Transfer 
Dock

1 
(0.88 %)

100 % (1) ​ ​ ​

Sow, 
Finisher, 
Nursery

1 
(0.88 %)

100 % (1) ​ ​ ​

Fig. 4. Venn diagram of shared edges between the four networks. The full 
network is represented by the entire outer rectangle. Each colored circle rep
resents a different sub-network. The overlap in the diagram represents the 
number of shared unique edges between those networks.

T. Prezioso et al.                                                                                                                                                                                                                                Preventive Veterinary Medicine 234 (2025) 106370 

9 



Despite its limitations, this work is novel in North America since we 
incorporated all known movements in and out of properties within three 
production sites, including living and deceased animals, various truck 
types, farm personnel, service vehicles, and contract workers.

5. Conclusion

The full network representing three co-located North American 
swine systems shows topology similar to both small-world networks, due 
to the shorter path lengths and higher centrality measures, and heavy- 
tailed degree distributions, from which we could identify potential 
super-spreader premises. This is in accordance with other livestock 
networks. There are potential super-spreader properties that can 
disseminate infection to less connected properties. Even though these 
hubs can be locations targeted for control measures, the increased 
connectivity allows other pathways for disease to spread around these 
centers, allowing continuation of epidemics and potential failure of 
targeted interventions. We may see higher epidemic sizes, lower 
epidemic thresholds, faster disease spread, and less resistance to 
randomly introduced infection compared to random graphs.

We show that network structure changes when additional trans
mission pathways are added to the model. Changes in structure will 
affect function and therefore transmission of infectious diseases. These 
results indicate that biosecurity protocols should involve human flow in 
addition to animal flow in a hierarchical direction. If disease trans
mission routes include indirect contacts, such as fomites and physical 
transmission, then human movements need to be included in biosecurity 
protocols as well as disease transmission models. Recommendations for 
biosecurity protocols based on animal and truck movements alone may 
be insufficient.
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